Dissections of a Triangle to Multiple Triangles

Author : Gavin Theobald

2×{3} Two triangles
3×{3} Three triangles
4×{3} Four triangles
5×{3} Five triangles
6×{3} Six triangles
7×{3} Seven triangles
8×{3} Eight triangles
9×{3} Nine triangles
10×{3} Ten triangles
11×{3} Eleven triangles
12×{3} Twelve triangles
13×{3} Thirteen triangles
16×{3} Sixteen triangles
×2 ×3 ×4 ×5 ×6 ×7 ×8 ×9 ×10 ×11 ×12 ×13 ×14 ×15 ×16
5 6 4 9 11 11 13 9 16 18 18 19 16


Triangle — 2 × Triangle (5 pieces)

Discovered by Harry Bradley.


Triangle — 3 × Triangle (6 pieces)

Described by Plato.

The dissection is translational and hingeable.


Triangle — 4 × Triangle (4 pieces)

The dissection is translational.


Triangle — 5 × Triangle (9 pieces)

Discovered by Ernest Irving Freese.


Triangle — 6 × Triangle (11 pieces)


Triangle — 7 × Triangle (11 pieces)

Previouly Ernest Irving Freese discovered a 12 piece solution.


Triangle — 8 × Triangle (13 pieces)


Triangle — 9 × Triangle (9 pieces)

The dissection is translational.


Triangle — 10 × Triangle (16 pieces)


Triangle — 11 × Triangle (18 pieces)


Triangle — 12 × Triangle (18 pieces)

The dissection is translational and hingeable.


Triangle — 13 × Triangle (19 pieces)

Previouly Ernest Irving Freese discovered a 20 piece solution.


Triangle — 16 × Triangle (16 pieces)

The dissection is translational.