Dissections of a Triangle to Multiple Triangles

Author : Gavin Theobald

2×{3} Two triangles
3×{3} Three triangles
4×{3} Four triangles
5×{3} Five triangles
6×{3} Six triangles
7×{3} Seven triangles
8×{3} Eight triangles
9×{3} Nine triangles
10×{3} Ten triangles
11×{3} Eleven triangles
12×{3} Twelve triangles
13×{3} Thirteen triangles
16×{3} Sixteen triangles
×2 ×3 ×4 ×5 ×6 ×7 ×8 ×9 ×10 ×11 ×12 ×13 ×14 ×15 ×16
5 6 4 9 11 11 13 9 16 18 18 19 16


Triangle - 2 x Triangle

Triangle — 2 × Triangle (5 pieces)

Discovered by Harry Bradley (1930).
Triangle - 3 x Triangle

Triangle — 3 × Triangle (6 pieces)

Described by Plato.

The dissection is translational and hingeable.


Triangle - 4 x Triangle

Triangle — 4 × Triangle (4 pieces)

The dissection is translational.


Triangle - 5 x Triangle

Triangle — 5 × Triangle (9 pieces)

Discovered by Ernest Irving Freese.
Triangle - 6 x Triangle

Triangle — 6 × Triangle (11 pieces)


Triangle - 7 x Triangle

Triangle — 7 × Triangle (11 pieces)


Triangle - 8 x Triangle

Triangle — 8 × Triangle (13 pieces)


Triangle - 9 x Triangle

Triangle — 9 × Triangle (9 pieces)

The dissection is translational.


Triangle - 10 x Triangle

Triangle — 10 × Triangle (16 pieces)


Triangle - 11 x Triangle

Triangle — 11 × Triangle (18 pieces)


Triangle - 12 x Triangle

Triangle — 12 × Triangle (18 pieces)

The dissection is translational and hingeable.


Triangle - 13 x Triangle

Triangle — 13 × Triangle (19 pieces)


Triangle - 16 x Triangle

Triangle — 16 × Triangle (16 pieces)

The dissection is translational.